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The Formation of Order in the Alloy CdMg3 
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An X-ray analysis of the order-disorder transformation in the close-packed-hexagonal alloy CdMg s 
is described. The distribution of intensity in the principal sections of the diffuse super]attice re- 
flexions is determined from moving-film photographs obtained at one stage of the ordering process. 
It  is shown that the intensity at any point in a diffuse reflexion having indices hkil with 1 odd is 
given by the Fourier stmunation 

I (u, v, w) ---- Z ~_b" ~ K exp [-- (ax ~ + fly~-p 7z ~'- ~xy)] exp [2hi (ux + vy + wz)] , 
x y z 

where the constants a, fl, ), and ~ tend to zero as complete order is approached. 
Qualitative results obtained in optical-diffraction experiments, with punched cardboard masks 

simulating the structure of the alloy, indicate that ordering progresses by the interchange of nearest- 
neighbour atoms in such a way that cadmium atoms avoid each other. At a sufficiently advanced 
state of order antiphase domains appear, but the boundaries of these domains do not coincide 
with any preferred crystallographic planes. 

1. Introduction 

I t  is well known that, at the appropriate temperatures 
and compositions, a number of binary and ternary 
alloys undergo an order-disorder transformation. 
Further, those alloys whose structures are such that  
at least four different unit cells can be outlined on the 
same lattice may, possibly, possess varying degrees 
of short-range order (Bragg, 1940) which can be 
retained on quenching. Hitherto, however, the X-ray 
diffraction phenomena associated with short-range 
order have been observed only with certain composi- 
tions of the copper-palladium system (Jones & Sykes, 
1939), CuPt (Walker, 1952), AuCu (Roberts, 1954), 
CdMg 3 (Steeple & Lipson, 1951) and with AuCu 3. 
Quantitative studies of the diffuse superlattice re- 
flexions which result from imperfect order have been 
limited, principally, to AuCua, and among the many 
workers who have been attracted to the problem are 
Sykes & Jones (1936, 1938), Guinier & Griffoul 
(1947, 1948), Strijk & MacGillavry (1946), Cowley 
(1950), Taylor, Hinde & Lipson (1951), and Ed- 
rounds & Hinde (1952). 

Sykes & Jones interpreted the presence of diffuse 

superla~tlce lines on their powder photographs in 
terms of antiphase domains, which they assumed 
grew from nuclei until the boundaries of the domains 
touched. From a purely theoretical standpoint, Wilson 
(1943, 1949) calculated the diffraction effects to be 
expected from a number of models in which the anti- 
phase domains came into contact in various ways, 
and the theoretical predictions from one of his models 
were in fair agreement with the powder data of Sykes 
& Jones. The results derived by Wilson for a partially 
ordered single crystal were in qualitative, but not in 

quantitative, agreement with the published single- 
crystal data. 

An alternative view of the kinetics of the order- 
disorder transformation in AuCu a has been proposed 
by Edmunds & Hinde. They believe that  the ex- 
perimental evidence suggests that  order develops 
throughout the crystal by the interchange of nearest- 
neighbour atoms so that  gold atoms tend to avoid each 
other, and that, in consequence, antiphase domains 
are formed. The present investigation was undertaken 
in order to obtain further experimental data which 
might help to clarify the position both in regard to 
the kinetics of the transformation and to the theoreti- 
cally derived results of Wilson. 

2. Exper imenta l  detai ls  

2.1. Growth of single crystals of CdMg a 
The materials used in the preparation of the alloy 

were cadmium and magnesium of 99.98 % and 99-95 % 
purity respectively. These constituents were melted 
under flux in an iron crucible at a temperature of 
approximately 560 ° C. and, after being cast in a thick 

copper mould, the alloy was homogenized by heat- 
treatment for 60 hr. at 450 ° C. in an evacuated silica 
tube. From an analysis of the alloy it was found that  
the atomic percentage of magnesium was 75.4. 

Single crystals were obtained by slow-cooling finely 
divided pieces of CdMg a from the melt at the rate of 
1 ° C. per minute. Since magnesium is readily attacked 
by both silica and air at temperatures of this order. 
the pieces of alloy were packed into an iron container 
which was then sealed off in a silica tube under low- 
pressure argon. Although many of the specimens were 
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Fig. 1. Moving-film photographs of the diffuse and sharp reflexions. (a) Oscillation about [0001],diffuse. 

(b) Oscillation about [0001], sharp. (c) Oscillation about [01i0J, diffuse. (d) Oscillation about [0110], sharp. 

attacked by the residual gases in the container, a 
number remained unaffected; these formed shiny 
spherical pellets ranging in diameter from 0.1 mm. to 
0.2 mm. which X-ray examination showed to be single 
crystals of CdMg a. 

2.2. X-ray technique 
The specimen was attached, by means of a thin film 

of adhesive, to the inside wall of an evacuated thin- 
walled capillary tube of pyrex glass. With other than 
a thin film the crystal was distorted, on heat-treat- 
ment, by the differential expansion between the alloy 
and the adhesive. As the structure of CdMg a is hex- 
agonal (Dehlinger, 1930), the X-ray data  were ob- 
tained by irra~_l_iating the alloy (with Cu K s  radiation) 
with the [1010] and [0001] directions set in turn 
along the axis of rotation. Use was made of the 
moving-film technique developed by Edmunds & 
t t inde (1952) in which the screen of the Weissenberg 
goniometer was an accurately uniform aperture of 
approximate width 0.1 mm. ; thus, from a photograph 
obtained with an oscillating single crystal, the inten- 
sity distribution in a thin section of reciprocal space 
perpendicular to the axis of rotation could be deduced. 

The X-ray intensities were measured on a deflec- 
tion microphotometer, intensity readings of the diffuse 
reflexions being taken at intervals of 0.075 ram. in 
two perpendicular directions whilst those of the cor- 
responding sharp reflexions were obtained at  intervals 
of 0.05 mm. ; observations were continued well into 
the general background and the intensity distribution 
in each spot was determined relative to this back- 
ground. Over the angular range covered by a reflexion 
the temperature,  absorption, and polarization and 
Lorentz factors could be assumed constant. 

2.3. Choice of reflexiqns and the method of heat treatment 
The critical temperature for CdMg a was found to 

be 160 ° C. Above this temperature the alloy has a 
disordered close-packed hexagonal structure while at 
room temperature ordering proceeds slowly (Hume- 
Rothery  & Raynor,  1940). The structure amplitude 
of a superlattice reflexion from a fully ordered crystal 
depends upon the indices of tha t  reflexion; with 1 odd 
it is proportional to ±[/3(fCd--fM~), while for 1 even 
the value is proportional to +2(fc~--fM~)or to 

(fc~--f~) according as (h -k )  is or is not a multiple 
of 3, f being the atomic scattering factor. 

Owing to the geometry of the apparatus,  it was 
possible to pass only first-layer-line reflexions through 
the modified screen of the Weissenberg goniometer. 
Thus when the crystal was oscillating about the [0001] 
direction only reflexions with 1 odd were recorded, 
but  all three types of superlattice reflexion could be 
examined when the oscillation was about the [10i0] 
direction. Reflexions 3251, 415-2, 314-3 and 3 1 ~  were 
selected because they occurred at a Bragg angle of 
approximately 45 °, in which angular region the effects 
of both instrumental  broadening and white radiation 
were small. 

Once the crystal had been correctly orientated on the 
goniometer it remained untouched, heat- treatments 
being carried out in 8itu by directing a stream of hot 
air on to the specimen. In this way the alloy was dis- 
ordered by subjecting it to a 15 min. anneal at  200 ° C., 
after which an effective quench was obtained by 
cutting off abrupt ly  the supply of hot air. When or- 
dering had been allowed to progress for 15 days at 
16 ° C. the process was virtually arrested by lowering 
the temperature of the crystal to 5 ° C. by means of 
a stream of cold, dry  air; the diffuse reflexions were 
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Fig. 3. Var ia t ion  of the  values of the  Four ie r  t r ans form K. (a) Reflexion 4152. (b) Ref lexion 314-3. (c) Ref lexion 3251. 
K x , y , / K o o - - - - K x , z . l K o o  ~ 0.9, 0.8, 0.7, 0-6, 0.5, 0.4, 0-3, 0.2, 0.1. 

then recorded. The correspondhlg sharp reflexions 
were photographed after the alloy had been cooled 
from 200 ° C. to room temperature in 8 hr. 

The diffuse and sharp spots are shown in Fig. 1. 
I t  was clear that  the intensity of the diffuse 3144 
reflexion relative to the background was too weak to 
be reliable, and work on this reflexion was therefore 
abandoned. 

3. Analysis  of the exper imenta l  data  

3.1. Corrected intensity distributions in reciprocal space 

Superimposed on the broadening due to imperfect 
order was an instrumental broadening which occurs 
to a greater or less degree on all types of X-ray- 
diffraction photograph. The linear correction for the 
instrumental broadening of a line (Stokes, 1948) is 
not strictly applicable to the intensity distribution in 
the principal section of a spot, and a two-dimensional 
modification of Stokes' treatment was applied by 
Edmunds & Hinde. However, this involves consider- 
able arithmetical labour, and therefore the diffuse 
r~fl~xi0n~ from CdMg~ were corrected by the one- 
dimensional method since it was considered that  the 
attendant loss in accuracy could be tolerated. The 
linear correction was made in six different directions 
across each spot when the latter was both diffuse and 
sharp, and the corrected intensity at the point (~) in 
each direction was expressed as a Fourier summation 
of the form 

I(Q) = ZD'~ exp [2~i~R], (1) 

where the values of R and Q were the computational 
coordinates, and the coefficients F R were the quotients 

of the corresponding Fourier coefficients for the ob- 
served diffuse and sharp reflexions. 

Contours of constant intensity are drawn in Fig. 
2 (a), (c) and (d) for the__principal sections in reciprocal 
space of the 4152, 3143 and 3251 reflexions respec- 
tively. For the purposes of__comparison, the distribu- 
tion of intensity in the 4152 reflexion resulting from 
a two-dimensional correction---evaluated on the Man- 
chester computer--is shown in Fig. 2(b). I t  will be 
seen that  the agreement with Fig. 2(a) is quite satis- 
factory. 

The shapes of the contours in the principal section 
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Fig. 5. Variat ion of expressions of ~he type  ( logeKoo- - logeKx ,o )½ with  x', y" and z'. 
(a) Reflexion 4152. (b) Reflexion 3143. (c) Reflexion 3251. 

of reciprocal space which is parallel to the a'c* plane 
are roughly elliptical, as are the contours parallel to 
the a'b* plane, although the latter are very nearly 
circular. Distances along the orthogonal axes (Opqr) 
are measured in reciprocal-length units, and the 
intensity at the point (p, r) is given by the Fourier 
summation 

I(p, r) : XXF~,~, exp [2~i(px'+rz')] , (2) 

where the axes (Ox'y'z') in the crystal space are 
parallel to (Opqr). 

Each corrected intensity distribution was found to 
be centrosymmetrical, but for the reflexions considered 
the origins of p and q, and of p and r, did not fall 
exactly at the centres of symmetry. The origins were 
therefore transferred to the appropriate centres, the 
new Fourier coefficients being real. 

3.2. Relationship between the Fourier coefficients and 
the coordinates in crystal space 
The Fourier transform of the two-dimensional distri- 

bution of intensity I(p,  q) round a reciprocal-lattice 
point will be a function of x' and y', say K~v,. I t  
follows that  the Fourier coefficients F~, v, of the sum- 
mation for the intensity distribution as derived above 
will be the values of this transform at regularly spaced 
points, and therefore the coefficients may be utilized 
to plot the continuous variations of the function 
K~,v,. Similarly for other sections. 

The variations of K ~  in the x'z' plane for re- 
flexions 4152 and 3143 are shown respectively in 
Fig. 3(a) and (b), while the variation of K~,v, in the 
x'y' plane for reflexion 3251 is given in Fig. 3(c); in 
Fig. 4 are plotted the logarithmic variations of K~,r 
along the x' and z' directions for the 4152 reflexion. 
Within the limits of experimental error the latter 
curves__ are parabolic--as are similar graphs for the 
3143 and the 3251 reflexions--a conclusion which is 
verified by the fact that  graphs of the type 
(log K00-1ogK~,0) ½ against x' are all straight lines 
through the origin (Fig. 5(a), (b) and (c)). I t  follows 
from the straight-line relationships that  

K,,o = Koo exp (-o~ 'x '2) ,  

Kov, = Koo exp (_fl,y,2), 

Kot = Koo exp ( -y 'z '~) ,  

(3a) 
(3b) 
(3c) 

where (~')½, (,8')½ and (y')½ are the slopes of the 
respective lines. The values of the coefficients a ' ,  fl' 
and ~,' for the three reflexions considered are shown 
in Table 1. 

Table 1. The values of the coefficien~ ~', fl' and y' 
Reflexion a '  (x' axe )  p '  (y" axm) 7'  (z" axm) 

4152 0-098 - -  0"056 
3143 0.105 - -  0.060 
3251 0.092 0.076 

On examination, the contours of Fig. 3 appear to 
be elliptical or, in Fig. 3(c), possibly circular. If this 
conclusion is correct, then the straight-line graphs of 
Fig. 5 show that  these families of ellipses will be 
represented by the expressions 

K=, v, = .Koo exp [ -  (~'x'2+fl'y'~)] (4a) 
and 

K=,~ = K00 exp [ -  (o¢'x'2+y'z'2)] , (4b) 
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Fig. 6. Contours of cons tan t  Kx'y" and Kx,z, ,derived f rom ex- 
pressions (4a) and (4b)._ (a) Reflexion 4152. (b) Reflexion 
3143. (c) Reflexion 3251. 

Kx,y , /Koo = Kx,z,[Koo = 0.9, 0.7, 0.6, 0.5, 0.3 and  (Fig. 
6(c) only) 0.2. 

~) :  Mean values of the  exper imenta l  coefficients. 
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where c~', fl' and ? '  have the values given in Table 1. 
The full lines shown in Fig. 6(a), (b) and (c) are 

contours of constant K calculated from the expressions 
(4a) and (4b), and on the same graphs the mean values 
of the experimental coefficients derived from the left 
and right quadrants of Fig. 3 are plotted. Agreement 
between the experimental points and the full lines is 
so satisfactory as to justify the conclusion tha t  the 
function K is, in fact, given by the equations (4a) 
and (4b). The agreement for values of K/Koo less than 
0.3 is less satisfactory; one such contour is shown in 
Fig. 6(c), and the discrepancies arise because at these 
low values the effect of experimental error is more 
marked. 

A s  already stated, the structure amplitude asso- 
ciated with a given sharp superlattice reflexion from 
CdMg 3 is the same, except for changes in sign, for all 
reflexions of the same type. I t  can be shown also tha t  
for diffuse reflexions of the same type the distribution 
of intensity round the corresponding reciprocal-lattice 
point is the same. Thus, from consideration of the data  
for the 314--3 and 3251 reflexions, it may be deduced 
tha t  for any diffuse spot for which 1 is odd the distri- 
bution of intensity in the three principal sections may 
be expressed as a Fourier summation whose coeffi- 
cients are given by the function K, where 

Kx. ~, = K00 exp [ -  (~'x'~+?'z'~)] , (5a) 

K~y. = K00 exp [ -  (?'z'*+fl'y'~)] , (5b) 

Ky,~. = K00 exp [-( f l 'y '~+a'x '~)] .  (5c) 

Examination of the intensities at points common to 
any two sections shows that  K00 and the coefficients 
c~', fl' and 7' have the same values in each of these 
expressions; allowing for experimental error, the 
measured values of a '  given in Table 1 confirm this. 

For superlattice reflexions of the type h - k  = 3n 
with 1 even it  was possible to determine the intensity 
distribution only in the a'c* section, no data being 
available for the other sections. This distribution can 
be expressed as a Fourier summation whose coeffi- 
cients are given by equation (5a). 

I t  was pointed out earlier tha t  reflexions of the 
type h- /c  =~ 3n with 1 even were too weak to be 
recorded satisfactorily. 

Wilson (1949) has shown that  the intensity of re- 
flexion, as a function of position in reciprocal space, 
for ~ crystal whose unit cells ~re not all alike may be 
expressed as an integral, or a summation 

OO 

l (u ,  v, w) = U -1 Z,  .Y,.Y, V(x, y, z)J(x,  y, z) 
X = ~  y Z 

× exp [2~i (ux+vy+wz)] .  (6) 

In this expression, J(x,  y, z) is the mean value of F~.F~ 
for two cells j and j '  separated by lattice translations 
xa, yb and zc, and the quantities ua*, vb* and wc* 
are distances measured from the reciprocal-lattice 
point. The volume U of a unit cell is constant and 

V(x, y, z) can also be assumed constant over dis- 
placements xa, yb and zc which are small compared 
with the size of .the crystal. 

The function U-1V(x,  y, z)J(x, y, z), where x, y and 
z are now regarded as continuously variable, is the 
Fourier transform of the distribution of intensity 
I(u,  v, w) round a reciprocal-lattice point. For com- 
parison with the experimental results for CdMg a the 
intensity distribution may be referred to the orthog- 
onal axes (Opqr) used above, in which case U, V and J 
will be referred to the axes (Ox'y'z') and expression (6) 
becomes 

CO 

I(p,  q, r) = U -1 .~  .Y,~, V(x',  y', z ' )J(x ' ,  y', z') 
X" = - - 0 0  y" Z" 

× exp [27d(px'+qy'+rz ' )] .  (7) 

Substitution of the summation for an integral is valid 
when referred to the transformed axes, as the argu- 
ment 27d(px'+qy'+rz ')  only varies slowly with inte- 
gral changes of x'y'z' when p, q and r are small. 

Over the principal section for which r is zero, we 
have 

I(p,  q, O) = .~.~, U - I . ~  V(x',  y', z ' )J  (x', y', z') 
X' y" Z' 

× exp [2~d(px'+qy')].  (8) 

The coefficients U-I.Y, V (x', y', z ' )J  (x', y', z'), or in 
Z* 

practice ~ J(x' ,  y', z') since U-1V(x ', y', z') is vir. 
z' 

tually constant, will be directly comparable with the 
function K~.y, which has been plotted from the ex- 
perimental values of the Fourier coefficients obtained 
from the measured distribution I(p,  q, r). Similarly the 
functions K~.t and Kx,y. will be directly comparable 
with ~ J(x ' ,  y', z') and ~ J(x ' ,  y', z') respectively. 

x" z" 

Consequently, for superlattice reflexions with 1 odd 
(the only type for which data  in three dimensions 
were available) the probable solution for the function 
J (x', y', z') is 

J(x ' ,  y', z') = K exp [ -  (Lx'x'2+fl'y'2+?'z'2)] , (9) 

giving 

I(p,  q, r) =- ~Y,.~,.Y, K exp [-(~'x '~+fl 'y '2+?'z '")] 
X" y '  Z" 

× exp [2ni(px '+qy'+rz ' )] .  (10) 

The intensity distribution in the pr plane for re- 
tlexions o~ the type h - •  = ]n  with 1 even is given 
by a relation of the form 

I(p,  0, r) = ~ . , ~ K  exp [ -  (a 'x ' '+7 'z ' " ) ]  
x' z' 

x exp [2ni(px'+rz')] , (11) 

where a '  and ? '  have the same values as for the first 
type of reflexion (1 odd) within experimental error. 
As the values of a ' ,  fl' and ? '  tend to zero the alloy 
approaches the state of perfect order, and as the 
values tend to infinity the system tends to complete 
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disorder. Since the values of ~', fl' and ~,' were of the 
order of 0.1 it is evident tha t  the experimental data  
refer to a high degree of order. 

To express J as a function of (x, y, z) it is neces- 
sary  to apply the transformation equations 

x = 2.308x', (12a) 

y = (2.308 cos 60) .x '÷  (2.308 sin 60).y '  
= 1.154x'+l .999y' ,  (12b) 

z = 2.508z', (12c) 

leading to 

J(x,  y, z) --- K exp [ -  (o~x2+fly2+?z2-(~xy)] , (13) 

where 
(3~' + ~') 4~' 
3 x 2.3082 ' fl 3 × 2.3082 ' 

~' 2.5082 (~ 4fl'  . ' 3 × 2"3082 ' 

the values of which, for 1 odd, are given in Table 2. 

Table 2. The values of the coefficients ~, fl, ? and 
for 1 odd 

(x axis) fl (y axis) ? (z axis) 
0.024 0.019 0.0032 0.024 

This is the value of J ,  i.e. the mean of FiF~, for two 
cells j and j '  separated by  lattice translations xa, yb 
and zc parallel to the crystallographic axes. 

For  the section with w -- 0, the intensity distribu- 
tion for l odd is given by 

co 

I(u,  v, O) = .Z, ~ , K  exp [-(~x2+fly2-(~xy)] 
X = - - O 0  y 

× exp [2~i(ux+vy)] ,  (14a) 

where ~ = fl = ~ if the section has circular contours, 
i.e. if c~'= fl'. Similarly, we have 

co 

I(0, v, w) = ~ ~ K  exp [-(fly2+?z2)] 
y ---~--00 Z 

× exp [2~i(vy+wz)] . (14b) 

4. The  accu racy  of t h e  e x p e r i m e n t a l  d a t a  

The theoretical t rea tment  by Wilson (1949) of the 
problem of diffraction by a crystal containing mis- 
takes leads to an expression for the variation of the 
Fourier coefficients along an axis which is given by 
the expression 

K~o -- K00 exp ( - ex ' )  . (15) 

However, according to the experimental results ob- 
tained with CdMg 3 the variation is given by equation 
(3a), and this is in agreement with the conclusions of 
Edmunds  & Hinde (1952) for AuCu 3. One of the ways 
in which the curve of Kx,0 derived from equation (3a) 

differs from tha t  predicted by Wilson is tha t  the 
former has a rounded peak at the origin whereas the 
latter has a sharply pointed cusp. I t  has been suggested 
by Wilson tha t  the expression (15) represents the true 
variation of K with x' and tha t  the cumulative effect 
of several factors makes this curve conform to the 
expression (3a); these factors include experimental 
errors and the finite extent  of the diffuse reflexions 
in reciprocal space. An estimate was therefore made 
of their effect on the variation of K with x', and for 
this purpose the data  for the 4152 reflexion were 
utilized. The experimental curve is drawn as a full 
line in Fig. 7, and at various values of K~,0 are shown 

1.0. 

v, 

0.5 

" ~ " ,  " "  . . . . .  ~ = 0.05 

~ ' ,  "" e ~= 0"07 

~x~ 
e 010  

X '  

Fig. 7. Variation of K~o/Koo with x'. The full line and the 
broken lines are derived from expressions (3a) and (16) 
respectively. 

the standard deviations as calculated from the ex- 
pression given by Stokes (1948). I t  was then assumed 
tha t  the true variation of K was according to equation 
(15) and the values of Kz,0 were calculated from the 
integral 

f ~ exp ( - 2 ~ i x ' p ) d p  
K~0 = 2sK00 (16) -~  82 + 492p2 , 

the experimental value of A being finite (Eastabrook 
& Wilson, 1952) and equal to ~. 

The curves for different values of s are shown by 
the broken lines (Fig. 7), and it  is clear tha t  although 
the cusp at  the origin has been converted into a 
rounded peak there is no value of s which will bring 
a calculated curve into satisfactory agreement with 
the experimental curve. 

Some error will arise from the spread of the sharp 
reflexion (from the fully ordered crystal) in a direction 
normal to the reciprocal-lattice section under con- 
sideration, and also from the finite width of the screen 
aperture; these two errors may  be considered together. 

I f  g(p, q, r) is the true distribution of intensity for 
the sharp spot, then the observed sharp spot will be 
broadened slightly, giving an intensity distribution 

lb b g(p' 
h(q, r) o~ q+~p, r+/~p)dp = v2(O, q, r) , (17) 

s h a r p  

63* 
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where 2b is the width of the reciprocal-lattice section 
corresponding to the slot width, and 2 and # are 
constants. The intensity at the point (q, r) of the 
diffuse spot is 

h(q, r) = 
diffuse 

dq' dr' r' ) v 2 p,=_ I(p ' ,  q', ( - p ' ,  q -q ' ,  r - r ' )dp ' ,  

(181 
where 

lb b g ( P -  P ,  V ( - P ' ,  q-q ' ,  r - r ' )  = ' q -q ' ,  ( r - r ' ) d p  . 

:For any fixed value of q-q ' ,  r - r '  the function 
v 2 ( - p ' , q - q ' , r - r '  ) may be written in the form 
f(p')v(O, q -q ' ,  r - r ' ) ,  where f(p')  gives the intensity 
variation with p' of the broadened sharp spot for these 
particular q-q ' ,  r - r '  coordinates. Unfortunately, the 
value of f (p ')  will differ for different values of q-q ' ,  
r - r ' ,  but it should be possible to choose a mean 
value of the function f (p ')  which gives a fairly close 
representation of its variation with p' when q-q ' ,  
r - r '  are small, i.e. for values of q-q ' ,  r - r '  which 
make V ( - P ' ,  q -q ' ,  r - r ' )  of appreciable magnitude. 
If this be done, the intensity distribution in the dif- 
fuse reflexion may be written as 

h(q, r) dq' dr' v(O , q -q ' ,  r - r ' )  
diffuse ,Jq'=--oo ,Jr" 

x I(p' ,  q', r ' ) f (p ' )dp'  
p'=--e'~ 

f f : = dq'dr'v/(O, q -q ' ,  r-r')q~(O, q' r ') .  
(19) 

Stokes' analysis of the diffuse and sharp spots then 
gives the coefficients of a Fourier summation for 

cp(O, q, r) = q, r) f(p)dp . (20) 

Thus, instead of 1(0, q, r) for any chosen q, r coor- 
dinates, a mean of the values of I(p,  q, r) is obtained 
for points on either side of the section O, q, r weighted 
according to the spread f(p) of the sharp spot in the 
direction p. Since f(p) refers to the sharp spot, its 
value falls to zero quickly as p departs from zero so 
that  the values of I(p,  q, r) averaged will not vary 
much from I(0, !/, r), For a function such as that  
given by equation (10) above, the variables p, q and 
q, r are separable and we have 

I(p,  q, r) = I(0, q, r)~(p) (21) 

exactly. I t  follows that  for such a function 

qD(o, q, rl = I(O, q, rl ~ ( p l / ( p l d p o J ( O ,  q, r); (221 

the only error arises from a failure of f(p) to represent 
each section accurately. 

5. Optical-diffraction data 

There  is a formal analogy between two-dimensional 
optical-diffraction patterns and two-dimensional X-ray 
diffraction patterns. Therefore the distribution of 
intensity in a section of the reciprocal lattice may be 
compared with the optical-diffraction pat tern of a 
two-dimensional array of holes, the lat ter  representing 
the projection, along the corresponding zone axis, of 
the atomic arrangement in a single crystal. Steeple & 
Lipson (1955) exploited this analogy and they pro- 
duced gratings which simulated the projections of the 
CdMg 3 structure along the [01i0] and  [0001] directions 
respectively. After commencing with disordered grat- 
ings, order was gradually introduced by interchanging 
nearest-neighbour atoms in such a way that  cadmium 
atoms tended to avoid each other. As order progressed, 
the general background of the diffraction pat tern 
began to collect into well-defined regions of diffuse 
intensity until finally the distribution of intensity in 
the optical pat tern was similar to tha t  in reciprocal 
space obtained from the X-ray data. Further,  although 
the only condition imposed on the interchanges was 
that  cadmium atoms should avoid each other, it was 
found that  antiphase domains appeared and tha t  these 
domains increased in size as order increased. This 
result is in agreement with tha t  obtained by Taylor 
et al. (1951) with AuCu3, but  with the difference tha t  
the domain boundaries in the CdMg a model do not lie 
along any preferred crystallographic planes. The ob- 
servations give support to the suggestion of Edmunds 
& Hinde that  ordering progresses through the inter- 
change of nearest-neighbour atoms so tha t  like atoms 
tend to avoid each other. I t  is unlikely, however, tha t  
the avoidance results in a reduction of strain energy 
because the atomic radii of cadmium and magnesium 
atoms are almost identical. There is the possibility, 
nevertheless, that  in the alloy the cadmium and mag- 
nesium ions may differ appreciably in radius. 

6. Conclusion 

Analysis of the distribution of intensity in the diffuse 
reflexions of the type with/- index odd leads to values 
of the function J(x,  y, z), the average of FjF~ for cells 
separated by translations xa, yb, zc, which vary in- 
versely as the exponential of a quadratic function of 
x, y and z. This is in agreement with the conclusions 
0f Edmunds & Hinde for the face-centred cubic struc- 
ture of AuCu a, although the expression for J(x,  y, z) 
is more complex for CdMg 3 owing to the lower sym- 
metry. There are a number of possible sources of error, 
but after examining these carefully it is concluded 
that  the suggested expression for J(x,  y, z) is sensibly 
of the correct form for the rather high degree of order 
present in the specimens examined. On the other hand, 
the Laplacian type of expression for J (x, y, z) proposed 
by Wilson does not agree with the observations within 
the estimated experimental error. 



H. S T E E P L E  AND I. G. E D M U N D S  941 

Comparison of the results obtained by both optical- 
diffraction and X-ray-diffraction methods lends sup- 
port to the suggestion made by Edmunds & Hinde, 
in connection with AuCu a, that  ordering progresses 
through the general interchange of nearest-neighbour 
atoms so that  like atoms tend to avoid each other. 
However, it seems unlikely that  reduction in strain 
energy contributes to the ordering forces in CdMg a as 
the atoms of Cd and Mg have almost identical radii, 
although there remains the possibility that  the con- 
stituent ions of the alloy may differ appreciably in 
radii. 

The authors are indebted to Dr F. Fowweather, of 
the College of Science and Technology, Manchester, 
for carrying out the two-dimensional Fourier analysis 
on the Manchester computer, and to Prof. A. J. C. 
Wilson for helpful discussion of the problem. 
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Scattering of X-rays  by Defect Structures. II. An Extension of the Theory 
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(Received 22 March 1956) 

An earlier theory of the scattering of X-rays by a crystal containing defects is extended to the case 
where atoms are displaced by comparatively large amounts from their'mean positions. It is assumed 
that a displaced atom is influenced to about the same extent by a number of defects. 

In  an earlier paper (Cochran, 1956; referred to here as 
Part  I) it was shown that  the intensity of X-ray 
scattering from a crystal containing defects depends 
in a simple way on the Fourier transforms of the de- 
fects considered separately. The theory given in that  
paper is believed to be accurate, no matter how large 
the displacements of the atoms from their positions 
in the corresponding perfect crystal, in the situation 
where each atom is affected by no more than one 
defect. The theory also applies to the more important  
case where each atom is influenced by a large number 
of defects, provided that  the displacement u of an 
atom is small enough for the approximation 

exp [2~iu • S ] - I  = 2~ iu .  S 

to apply, S being a vector in reciprocal space, as 
defined in Part  I. Taking S = 1-3 A -1 (the limit of 

Cu K s  radiation) requires u to be less than about 
0-02 A, a very restrictive condition. In applying this 
theory to the problem of the scattering of X-rays by 
a structure containing interstitial atoms, considerably 
larger displacements are encountered. We have there- 
fore extended the theory to the situation where the 
displacements may be large, and are brought about 
by the simultaneous operation of a large number of 
defects, randomly distributed throughout the crystal. 
The theory of Part  I took account of possible changes, 
by replacement, of the scattering factors of atoms; the 
present theory is restricted to defects made up of 
atomic displacements. 

The intensity from the crystal containing defects 
will be 

lfc+~(S)l 2 =/}__Y/p/~ exp [2=i(Rp-Rq). S] 
p q 

× exp [2rd (up-  uq) • S] . (1) 


